Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего

образования «Национальный исследовательский технологический университет

«МИСИС»

Аль-Хафаджи Хусам Имад Махмуд

ОСОБЕННОСТИ СТРУКТУРЫ И СВОЙСТВ НАНОЧАСТИЦ И НАНОРАЗМЕРНЫХ ПОРОШКОВ ВаFe_{12-х}Me_xO₁₉ ПРИ РАЗЛИЧНЫХ ЗАМЕЩЕНИЯХ В ЖЕЛЕЗНОЙ ПОДРЕШЕТКЕ

Специальность 1.3.11 – Физика полупроводников

диссертации на соискание ученой степени кандидата физикоматематических наук

> Научный руководитель: к.т.н., Миронович Андрей Юрьевич

Общая характеристика работы

Актуальность работы

В последние десятилетия наблюдается значительный интерес к разработке новых материалов с уникальными магнитными свойствами, что обусловлено их широким спектром применения в электронике, медицине, хранении данных и других сферах. Среди множества магнитных гексаферриты материалов М-типа выделяются благодаря своим выдающимся характеристикам, таким высокие как частоты ферромагнитного резонанса, умеренная намагниченность насыщения, высокая коэрцитивная сила, сильная одноосная анизотропия, высокая температура Кюри, химическая стабильность. Эти свойства делают ферриты М-типа идеальными кандидатами для использования в самых разных приложениях от СВЧ-техники до постоянных магнитов.

Разработка новых материалов на основе гексаферритов М-типа основана на двух аспектах: 1) управление микроструктурой материала за счет применения определенных методов и условий синтеза; 2) изменение химического состава феррита. Комбинирование этих двух подходов дает возможность получать материалы с уникальными характеристиками. Так, в последние годы особенно актуальны исследования гексаферритов в наноструктурном состоянии тонких пленок, наночастиц, нанокристаллической керамики. Это обусловлено как развитием методов получения наноматериалов, так и разработкой теоретических основ практического приложения гексаферритов наноструктурных СВЧ-устройств, (самосмещенных наночастиц медицинских для приложений, наноструктурной керамики для постоянных магнитов с улучшенными характеристиками).

Особый интерес представляет гидротермальный синтез гексаферритов. Во-первых, эта методика позволяет снизить температуру получения ферритов в несколько раз. Во-вторых, получаемые ферриты представляют собой порошки, состоящие из дискретных кристаллитов субмикронных размеров. Это особенно важно для создания анизотропных гексаферритовых материалов посредством обработки полученных частиц в магнитном поле. Такие материалы могут быть использованы при создании постоянных магнитов, устройств памяти, планарных СВЧ-приборов.

Степень проработанности темы диссертации. К сожалению, по получения сравнению с другими технологиями ферритов, гидротермальный синтез не так распространен и, соответственно, недостаточно изучен. В частности, особенно мало работ, посвященных изучению влияния замещений железа другими катионами на свойства гексаферритов, полученных данным методом. Между тем известно, что свойства замещенных ферритов зависят не только от концентрации и типа замещающего элемента, но и от условий получения, обеспечивающих различное катионное распределение в структуре феррита. Кроме того, сторонние катионы могут по-разному влиять на кинетику процесса и вызывать изменение микроструктуры, что также сказывается на свойствах материала. В связи с ЭТИМ замещенные ферриты, полученные гидротермальным методом, по своим характеристикам могут значительно отличаться от ферритов аналогичных составов, синтезированных другими способами.

Данная работа направлена на то, чтобы расширить имеющиеся представления о гидротермальном синтезе гексаферритов, в частности изучить влияние различных замещающих катионов на магнитные свойства ферритов, а также рассмотреть возможные практические приложения полученных материалов.

Цель и основные задачи работы

Цель работы: Выявить зависимость магнитных свойств и микроструктуры гексаферритов BaFe_{12-x}Me_xO₁₉, полученных методом гидротермального синтеза, от типа и концентрации замещающего элемента и рассмотреть возможности практического применения данных ферритов.

В соответствии с поставленной целью решались следующие задачи: 1. Получить наночастицы гексаферритов М-типа методом гидротермального синтеза.

2. Изучить и объяснить влияние замещений железа кобальтом, никелем, хромом или алюминием на магнитные свойства наночастиц гексаферритов BaFe_{12-x}Me_xO₁₉.

3. Исследовать эффект влияния легкоплавких добавок Bi₂O₃ и B₂O₃ на спекание полученных наночастиц при 900 °C.

Научная новизна

1. Впервые методом гидротермального синтеза получены замещенные ферриты $BaFe_{12-x}Ni_xO_{19}$ и $BaFe_{12-x}Co_xO_{19}$ (x=0; 0,1; 0,3; 0,5); $BaFe_{12-x}Cr_xO_{19}$ и $BaFe_{12-x}Al_xO_{19}$ (x=0.0; 0.1; 0.3; 0.4). Изучено влияние типа и концентрации замещающих элементов на микроструктуру и магнитные свойства полученных ферритов.

2. На основе расчета магнитной энергии однодоменной частицы BaFe₁₂O₁₉ показана зависимость коэрцитивной силы от отношения диаметра такой частицы к ее толщине. Данная зависимость находится в согласии с результатами измерений.

3. Синтезированные образцы $BaFe_{12}O_{19}$, $BaFe_{12-x}Ni_xO_{19}$ и $SrFe_{12}O_{19}$ обладают более высокими значениями коэрцитивной силы в сравнении с большинством ферритов аналогичных составов, полученных другими методами. Данные различия связаны с уникальным сочетанием формы и размеров полученных частиц, обусловленным выбранными условиями синтеза.

4. По технологии низкотемпературного жидкофазного спекания получены керамические ферриты BaFe₁₂O₁₉ с коэрцитивной силой более 420 кA/м, что значительно превышает показатели большинства известных марок гексаферрита бария.

Практическая значимость

Установлены оптимальные соотношения Fe/Ba=9 и Fe/Sr=7, позволяющие получать гексаферриты бария и стронция методом гидротермального синтеза с последующим отжигом с наименьшим количеством побочных фаз.

Порошки полученных ферритов $BaFe_{12}O_{19}$ и $SrFe_{12}O_{19}$ характеризуются коэрцитивной силой в ≈ 450 кА/м и ≈ 470 кА/м, соответственно. Предлагается использовать изготовленные порошки для создания объемных керамических образцов методом жидкофазного спекания. Установлено оптимальное количество добавки $Bi(NO_3)_3$ (Bi_2O_3), позволяющее спекать полученные порошки $BaFe_{12}O_{19}$ без существенного изменения размеров частиц при 900 °C в течение 1 часа с сохранением высоких исходных значений коэрцитивной силы (> 420 кА/м). Данные результаты могут быть использованы для создания и производства постоянных ферритовых магнитов с высокой коэрцитивной силой.

Положения, выносимые на защиту

1. При гидротермальном синтезе гексагональных ферритов бария и стронция типа М наибольший выход гексаферрита достигается при соотношении в растворе-прекурсоре Fe/Ba=9 для BaFe₁₂O₁₉ и Fe/Sr=7 для SrFe₁₂O₁₉.

2. В ферритах BaFe_{12-х}Ni_xO₁₉ с ростом концентрации х никеля уменьшаются коэрцитивная сила и намагниченность насыщения, что связано с вхождением никеля в позиции 12k решетки гексаферрита.

3. Увеличение соотношения диаметра к толщине частиц гексаферрита пластинчатой формы приводит к существенному снижению коэрцитивной силы.

4. В ферритах BaFe_{12-x}Co_xO₁₉ с ростом концентрации x кобальта толщина пластинчатых кристаллитов гексаферрита уменьшается с 60 нм до 20 нм, что вызывает снижение коэрцитивной силы с \approx 450 кA/м (x=0) до \approx 190 кA/м (x=0.5).

5. В ферритах $BaFe_{12-x}Cr_xO_{19}$ с ростом концентрации х хрома коэрцитивная сила значительно снижается, вплоть до ≈ 166 кА/м (x=0.4), что обусловлено как изменением размеров частиц, так и вхождением хрома в решетку гексаферрита.

6. Процесс спекания полученных порошков $BaFe_{12}O_{19}$ начинается при 1200 °C и сопровождается значительным ростом кристаллитов. При более низких температурах исходные размеры зерен сохраняются, но спрессованные заготовки не обладают механической прочностью.

7. Добавки H₃BO₃ (B₂O₃) и Bi(NO₃)₃ (Bi₂O₃) способствуют увеличению плотности образцов, спекаемых при 900 °C, без интенсивного увеличения размеров кристаллитов. При этом использование оксида бора приводит к образованию побочной фазы гематита.

Достоверность результатов работы

Достоверность полученных результатов гарантируется воспроизводимостью данных экспериментов, использованием современного аналитического оборудования и стандартизированных методов анализа материалов. Обоснованность и достоверность научных результатов подтверждается рядом публикаций основных результатов в рецензируемых зарубежных научных изданиях и участием автора в международных профильных научных конференциях.

Личный вклад автора

Синтез образцов, пробоподготовка основной объем И экспериментальных данных получены лично автором или при его обработка непосредственном участии. Проведена результатов исследований и их подготовка для представления на международных конференциях. Все статьи по теме диссертационной работы были написаны автором, ряд аспектов по интерпретации экспериментальных результатов обсуждался с научным руководителем.

Апробация работы

Основные положения и результаты работы докладывались на следующих международных конференциях:

- XXV Международная конференция Новое в Магнетизме и Магнитных Материалах "Синтез Мп-замещенных гексаферритов бария гидротермальным методом, исследование их магнитных свойств и структурных особенностей", 1-6 июля 2024 года Москва, Российская Федерация;
- 2nd International Conference on Advanced Nanomaterials and Nanotechnology "Magnetic Properties And Structure Of Nanohexaferrites BaFe_{12-x}Ni_xO₁₉ And BaFe_{12-x}Co_xO₁₉ Powders Synthesized By The Hydrothermal Method", 20-21 ноября 2023 г. Вена, Австрия.

Публикации

По материалам диссертации опубликовано 5 статей в журналах, индексируемых в базах Scopus и Web of Science и входящих в список журналов, рекомендованных ВАК.

Структура и объем диссертации

Кандидатская диссертация изложена на 129 машинописных страницах, включает введение, пять глав, заключение и библиографию из 221 наименований; содержит 22 таблиц и 59 рисунков.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обозначена важность темы диссертации, поставлены цели и задачи исследования, подчеркнуты научная оригинальность и практическая значимость работы, а также выделен личный вклад автора и достоверность проведенного исследования.

В первой главе представлен обзор литературы, посвященный как общим сведениям о гексаферритах М-типа (их строение и химический состав, свойства, основные методы синтеза и области применения), так и более специфичным вопросам: особенностям гидротермального синтеза гексаферритов, влиянию замещений железа на магнитные и структурные свойства гексаферритов, основам технологии жидкофазного низкотемпературного спекания.

Вторая глава посвящена гидротермальному синтезу нанопорошков ϕ ерритов BaFe₁₂O₁₉ и SrFe₁₂O₁₉.

Принципиально схема синтеза образцов сводится к следующему: 1) готовятся растворы солей железа и бария (или стронция) и раствор гидроксида натрия; 2) растворы смешиваются в специальном реакторе для гидротермальной обработки – автоклаве; при этом образуется первичный осадок гидроксидов железа и бария (или стронция); 3) автоклав нагревается и выдерживается при заданной температуре (> 100 °C) в течение определенного времени, требующегося для образования необходимого продукта.

В результате экспериментов было обнаружено, что порошки, извлеченные из автоклава, не проявляют магнитных свойств, характерных для гексаферритов. Фазовый анализ с помощью мессбауэровской спектроскопии и методов рентгеновской дифракции не выявил наличия в них гексаферрита. Полученные результаты (рис. 1) указывают, что единственной железосодержащей фазой в таких порошках является ферригидрит – соединение системы Fe-O-H с достоверно неустановленным составом. Для трансформации полученных порошков в гексаферрит потребовался дополнительный высокотемпературный отжиг при 900 °C. В результате термической обработки образовывались частицы гексаферрита, представленные на рис. 2.

На свойства и состав получаемых частиц влияют различные параметры синтеза, например, концентрация реагентов, время и температура гидротермальной обработки. В данной работе в первую очередь была исследована зависимость фазового состава получаемых порошков от соотношения Fe³⁺/Ba²⁺ и Fe³⁺/Sr²⁺ в исходном растворе. Показано, что при соотношениях, близких к стехиометрическим, в порошках, помимо гексаферрита, образуется гематит. С другой стороны, при большом избытке бария и стронция образуются BaFe₂O₄ и SrFeO_{3-x}, соответственно. Наибольший выход гексаферрита достигается при соотношениях Fe³⁺/Ba²⁺ = 9 и Fe³⁺/Sr²⁺ = 7.

Рисунок 1 – Мессбауэровский спектр (а) и рентгеновская дифрактограмма (б) порошка BaFe₁₂O₁₉, полученного методом гидротермального синтеза без дополнительного отжига

Далее было изучено влияние температуры времени И гидротермальной обработки на фазовый состав получаемых порошков. В предыдущем эксперименте гидротермальная обработка проводилась при 180 °С в течение 4 ч. Предполагалось, что повышение температуры и времени будет способствовать образованию гексаферрита непосредственно в автоклаве. Сперва был проведен синтез при 180, 200 или 230 °C в течение 4 ч, а затем при 230 °C в течение 8 и 12 ч. Ни в одном из случаев так и не получено гексаферрита. В связи с было ЭТИМ лля лальнейших

экспериментов использовались наиболее «мягкие» для оборудования условия (180 °C, 4 ч), а для образования феррита получаемые порошки отжигались при 900 °C.

Рисунок 2 – Снимок полученных частиц феррита бария на просвечивающем электронном микроскопе

В третьей главе изучался эффект частичных замещений Fe на Ni, Co, Al или Cr. Исследовался фазовый состав, микроструктура, магнитные свойства и катионное распределение в порошках BaFe_{12-x}Me_xO₁₉, полученных методом гидротермального синтеза с последующим отжигом.

Первыми описываются результаты гетеровалентных замещений Fe³⁺ на Co²⁺ и Ni²⁺. Замещения реализовывались за счет уменьшения в исходном растворе концентрации нитрата железа с одновременным увеличением концентрации нитрата никеля или кобальта в пропорции, соответствующей получению ферритов BaFe_{12-x}Me_xO₁₉ (x=0.1; 0.3; 0.5) при допущении, что все катионы железа, кобальта и никеля переходят в твердую фазу.

В ходе анализа рентгеновских дифрактограмм полученных порошков установлено, что замещение железа на никель или кобальт приводит к уменьшению объема кристаллической решетки, при том, что ионные радиусы Co^{2+} и Ni²⁺ больше, чем у Fe³⁺. Этот эффект может быть обусловлен механизмами компенсации зарядового баланса при алиовалентных замещениях: окислением Co^{2+} и Ni²⁺ до Co^{3+} и Ni³⁺ или образованием кислородных вакансий. Кроме того, рентгенофазовый анализ выявил присутствие в образцах BaFe_{12-x}Ni_xO₁₉ примесной фазы BaFe₂O₄, количество которой положительно коррелирует с концентрацией никеля. Присутствие

моноферрита бария также подтверждается элементным картированием и мессбауэровской спектроскопией.

Магнитные параметры порошков $BaFe_{12-x}Ni_xO_{19}$ и $BaFe_{12-x}Co_xO_{19}$ представлены в таблице 1. С ростом концентрации замещающих элементов снижается намагниченность насыщения ферритов. Это можно объяснить, опираясь на катионное распределение, установленное с помощью анализа мессбауэровских спектров. Так, никель преимущественно локализуется в позиции 12k, а кобальт распределен по всем подрешеткам. Поскольку магнитные моменты ионов кобальта и никеля меньше, чем у Fe^{3+} , такое распределение приводит к уменьшению намагниченности. Вследствие замещений снижается и коэрцитивная сила. Однако, характер ее уменьшения разительно отличается у $BaFe_{12-x}Ni_xO_{19}$ и $BaFe_{12-x}Co_xO_{19}$.

Коэрцитивная сила зависит не только от состава феррита, но и от его микроструктуры. Ее высокое значение в случае незамещенного феррита обусловлено субмикронным размером зерен (рис. 2). Микроструктура Ni- и Со-замещенных ферритов представлена на рисунке 3. Как видно, морфология кристаллитов $BaFe_{12-x}Ni_xO_{19}$ практически не отличается от незамещенного $BaFe_{12}O_{19}$. С другой стороны, присутствие кобальта приводит к утоньшению кристаллитов гексаферрита с 60 до 20 нм. Такое изменение формы частиц приводит к новой конфигурации размагничивающих факторов, что в свою очередь может способствовать снижению коэрцитивной силы.

x	Намагниченность		Остаточная		Коэрцитивная	
	насыщения, А·м ² /кг		намагниченность,		сила, кА/м	
			A٠ı	$M^2/\kappa\Gamma$		
	Со	Ni	Со	Ni	Со	Ni
0	65.88		34.25		447.9	
0.1	60.14	58.67	31.37	30.27	460.9	425.3
0.3	52.21	53.47	21.3	27.53	259.9	369
0.5	49.78	49.13	20.19	24.87	189.15	288

Таблица 1. Магнитные параметры порошков BaFe_{12-x}Ni_xO₁₉ и BaFe_{12-x}Co_xO₁₉

Рисунок 3 – ПЭМ-изображения образцов ВаFe_{12-x}Ni_xO₁₉: а) x = 0.1; б) x = 0.3; в) x = 0.5 ВаFe_{12-x}Co_xO₁₉: г) x = 0.1; д) x = 0.3; е) x = 0.5

Для подтверждения этой гипотезы была рассмотрена модель изменения коэрцитивной силы однодоменной частицы гексаферрита бария в форме диска при различных соотношениях диаметра и толщины частицы. В основе модели лежит расчет магнитостатической энергии, которая складывается из энергии магнитокристаллической анизотропии E_a, энергии внешнего магнитного поля E_H и энергии размагничивающего поля E_d. Данные составляющие могут быть рассчитаны следующим образом:

$$E_a = K_u \sin^2\theta \tag{1}$$

$$E_H = -\overline{M}\overline{H},\tag{2}$$

$$E_d = \frac{1}{2}\widehat{N}\overline{M}^2 \tag{3}$$

где K_u – константа одноосной анизотропии;

θ – угол между направлением намагниченности и осью легкого намагничивания (ОЛН);

М – намагниченность частицы;

Ñ – тензор размагничивающих коэффициентов.

Размагничивающие факторы для диска с диаметром *а* и толщиной *с* рассчитывались по формулам

$$N_z = 4\pi \cdot \left(1 - \frac{c}{a} \cdot \frac{1}{\sqrt{1 + (\frac{c}{a})^2}}\right) \tag{4}$$

$$N_x = N_y = \frac{c}{a} \cdot \frac{2\pi}{\sqrt{1 + (\frac{c}{a})^2}}$$
(5)

Сначала величина коэрцитивной силы определялась в случае магнитного поля, направленного по нормали к плоскости пластинки гексаферрита в сторону, противоположную исходному направлению намагниченности. Было получено следующее выражение для определения поля перемагничивания.

$$H_{\rm c} = \frac{2K_u}{M_s} - 4\pi M_s + 6\pi M_s \cdot \frac{c}{a} \cdot \frac{1}{\sqrt{1 + \left(\frac{c}{a}\right)^2}}$$
(6)

График коэрцитивной силы как функции отношения диаметра частицы к ее толщине представлен на рисунке 4. Как видно, действительно, при утоньшении частицы происходит снижение коэрцитивной силы.

Рисунок 4 – Зависимость коэрцитивной силы частицы гексаферрита бария от ее морфологии. Красным выделена область соотношений *a/c* для полученных частиц BaFe₁₂O₁₉, синим – для частиц BaFe_{12-x}Co_xO₁₉

Полученные значения существенно отличаются от полученных экспериментально. Это связано с различными факторами, в том числе зависимости коэрцитивной силы от ориентации частицы относительно поля. Данные зависимости были рассчитаны и приведены на рисунке 5.

Рисунок 5 – Зависимость коэрцитивной силы частицы гексаферрита бария от направления приложенного поля

Можно заключить, что используемый метод синтеза позволяет производить частицы гексаферритов с морфологией, оптимальной для максимизации коэрцитивной силы в случаях, когда замещающие железо элементы не влияют на форму кристаллитов.

Далее были синтезированы и исследованы ферриты $BaFe_{12-x}Cr_xO_{19}$ и $BaFe_{12-x}Al_xO_{19}$ (x=0.1; 0.2; 0.3; 0.4). Cr^{3+} и Al^{3+} выбраны как ионы, способные повышать коэрцитивную силу гексаферрита.

Анализ рентгеновских дифрактограмм показал, что замещения железа на алюминий или хром приводят к уменьшению объема элементарной ячейки. Это согласуется с тем, что ионный радиус Fe^{3+} больше, чем у Cr^{3+} и Al^{3+} и подтверждает вхождение этих элементов в решетку. Также присутствие хрома и алюминия в образцах было подтверждено с помощью энергодисперсионной спектроскопии. В случае наибольшей концентрации хрома (x=0.4) в полученном порошке присутствовал гематит α -Fe₂O₃.

Магнитные характеристики порошков представлены в таблице 2. Как видно, замещения алюминием приводят к некоторому уменьшению намагниченности насыщения, но практически не влияют на коэрцитивную силу.

При увеличении концентрации хрома магнитные свойства ферритов ВаFe_{12-x}Cr_xO₁₉ существенно изменяются. Даже при малых замещениях (x=0.1) коэрцитивная сила снижается практически на 150 кА/м. Как было показано в предыдущих экспериментах, такой эффект может быть связан с изменением морфологии частиц. Ha рисунке 6 представлены микрофотографии порошков BaFe_{12-x}Al_xO₁₉ И $BaFe_{12-x}Cr_{x}O_{19}$. Действительно, замещения железа хромом приводят к некоторому изменению формы частиц: утоньшению и удлинению. Однако, по сравнению с образцами BaFe_{12-x}Co_xO₁₉, изменение соотношения диаметра к толщине у кристаллитов BaFe_{12-x}Cr_xO₁₉ выражено значительно слабее. Вместе с тем коэрцитивная сила Cr-замещенных ферритов гораздо меньше, чем у Со-замещенных. Иными словами, на величину Н_с порошков BaFe_{12-x}Cr_xO₁₉ влияет не только микроструктура, но и внутреннее кристаллическое строение.

X	Намагниченность		Остаточная		Коэрцитивная	
	насыщения, А·м ² /кг		намагниченность,		сила, кА/м	
			$\mathbf{A} \cdot \mathbf{m}^2 / \mathbf{k} \Gamma$			
	Al	Cr	Al	Cr	Al	Cr
0	65.88		34.25		447.9	
0.1	66.95	67.08	34.86	35.01	444.8	304.06
0.2	65.57	66.88	34.34	35.26	442.5	244.6
0.3	64.31	65.10	33.89	33.99	446.3	190.58
0.4	62.07	60.45	32.48	31.45	448.9	166.47

Таблица 2. Магнитные параметры порошков BaFe_{12-x}Al_xO₁₉ и BaFe_{12-x}Cr_xO₁₉

Рисунок 6 – ПЭМ-изображения образцов ВаFe_{12-x}Al_xO₁₉: a) x = 0.1; б) x = 0.2; в) x = 0.3; г) x = 0.4 ВаFe_{12-x}Cr_xO₁₉: д) x = 0.1;e) x = 0.2; ж) x = 0.3; з) x = 0.4

Анализ мессбауэровских спектров показал, что в образцах BaFe_{12-x}Cr_xO₁₉ наблюдается недостаток железа в позициях 12k, 4f₂ и 4f₁. Известно, что вклад в константу анизотропии от ионов Fe^{3+} в позиции 12k противоположен по знаку вкладам от ионов Fe³⁺ в других позициях. Таким образом, замещения в позиции 12k могут приводить к росту константы анизотропии и, соответственно, коэрцитивной силы. Тогда в BaFe_{12-x}Cr_xO₁₉ константа анизотропии может падать из-за отсутствия железа в позициях с положительным вкладом 4f₂ и 4f₁. Недостаток железа в этих узлах может быть вызван тем, что их занимает хром. При этом позиции 4f₁ являются тетраэдрическими, а ионы Cr³⁺ практически никогда не находятся в тетраэдрическом окружении в силу своей электронной конфигурации. С другой стороны, такие положения предпочтительны для ионов Cr⁶⁺. Таким образом можно предположить, что в процессе синтеза часть хрома окислилась до шестивалентного состояния. Тогда снижение коэрцитивной ферритов быть Cr-замещенных может силы вызвано как морфологическими особенностями их кристаллитов, так и комплексным внутренним строением.

В четвертой главе изучалась возможность синтеза из полученных порошков керамических образцов без значительных потерь в магнитных параметрах. Для этого использовалась технология низкотемпературного жидкофазного спекания. Ее сущность заключается в добавлении к основному материалу небольшого количества вещества, обладающего относительно низкой температурой плавления. При спекании это вещество плавится и образует между зернами основного материала жидкую прослойку, которая способствует уплотнению образца и, в некоторых случаях, росту зерен за счет ускоренного массопереноса.

В качестве легкоплавких добавок использовались оксиды бора или висмута, которые подмешивались к порошку гексаферрита бария в виде 0.5 масс.%, 1 масс.% и 3 масс.% борной кислоты (H₃BO₃) или нитрата висмута (Bi(NO₃)₃). Полученные смеси прессовались в пластины и отжигались при 900 °C. Для облегчения описания результатов исследований образцы обозначены следующим образом. Код образца включает название катиона металла в легкоплавкой добавке (Bi или B), за которым следует соответствующий массовый процент добавки (например, Bi-0.5, B-3 и т. д.).

Чтобы оценить эффект легкоплавкой добавки на спекание ферритов дополнительно были изготовлены пластины из чистого порошка BaFe₁₂O₁₉, которые отжигались в течение 1 часа при температурах 900 °C, 1000 °C,

1100 °C и 1200 °C. Пластины чистого гексаферрита, отожженные до 1100 °C, не имели качественных различий. После отжига они остались коричневого цвета, соответствующий цвету исходного порошка, крошились, оставляли на бумаге черту, легко разламывались. Пластина, обработанная при 1200 °C, проявила явные признаки спекания: наблюдалась усадка; цвет изменился на черный, соответствующий обычным ферритовым изделиям; образец не оставлял след на бумаге, а царапал ее. На рисунке 7 представлены микрофотографии пластин, отожженных при 1100 и 1200 °C. Как видно, даже при 1100 °C исходная микроструктура ферритового порошка сохраняется. При повышении температуры до 1200 °C происходит значительный рост зерен.

1100 °C

1200 °C

Рисунок 7 – АСМ-микрофотографии поверхности пластин гексаферрита, спеченных без добавок

Введение в феррит легкоплавких добавок существенно повлияло на качественные характеристики спеченных ферритов, указанные в таблице 3. Примечательно, что во всех случаях, кроме образца В-3, плотность полученных ферритов составляла 83.3-88.8 % от теоретической плотности (5.27 г/ см³), что примерно на 10% выше, чем у контрольного образца, отожженного при 900 °C без добавок. Уже это позволяет предположить, что выбранные легкоплавкие добавки способствуют спеканию гексаферрита при температуре 900 °C.

Микроструктура полученных пластин представлена на рисунке 8. Увеличение концентрации добавки в некоторых случаях приводит к заметному росту зерен, но их размеры не превышают 500 нм, а значит сохраняется и их однодоменное состояние.

Магнитные параметры образцов представлены в таблице 4. В большинстве случаев расхождение значений M_s и M_r между спеченными образцами и порошком не превышает 5%. Исключением является образец В-3, характеризующийся существенно меньшей намагниченностью. Это связано с наличием значительной доли слабомагнитного гематита, образующегося при взаимодействии оксида бора с гексаферритом бария.

Коэрцитивная сила полученных ферритов также демонстрирует немонотонное изменение с увеличением концентрации легкоплавкой добавки. Примечательно, что референтная пластина демонстрирует снижение содержания H_c на 8.7% по сравнению с порошком. Это несоответствие можно объяснить усилением контакта между частицами при прессовании, вследствие чего усиливаются магнитные взаимодействия между ними, а коэрцитивная сила уменьшается. Это явление проявляется во всех пластинах, в результате чего ни один из образцов не имеет H_c, эквивалентной исходному порошку. Тем не менее, коэрцитивная сила полученных пластин значительно выше, чем у многих известных марок гексаферрита бария.

	1 1	,		
Образец	Цвет	Усадка	Плотность, г/см ³	
Референтный	Коричневый, соответствует цвету исходного порошка BaFe ₁₂ O ₁₉	Не наблюдается	4.12±0.26	
B-0.5	Темно-коричневый	Не наблюдается	4.39±0.11	
B-1	Черный	Наблюдается	4.51±0.34	
B-3	Мраморная текстура, черный с красно-коричневыми вкраплениями	Наблюдается	4.01±0.13	
Bi-0.5	Темно-коричневый	Наблюдается	4.68±0.16	
Bi-1	Черный	Наблюдается	4.56±0.21	
Bi-3	Черный	Наблюдается	4.50±0.17	

Таблица 3. Плотность и качественные характеристики пластин BaFe₁₂O₁₉

Рисунок 8 – АСМ-изображения поверхности пластин $BaFe_{12}O_{19}$

,	Таблица 4. Магнитные характеристики полученных образцов BaFe ₁₂ O ₁₉						
	Количество добавки, масс.%	Намагниченность насыщения, А·м ² /кг		Остаточная намагниченность, А·м ² /кг		Коэрцитивная сила, кА/м	
		H ₃ BO ₃	Bi(NO ₃) ₃	H ₃ BO ₃	Bi(NO ₃) ₃	H ₃ BO ₃	Bi(NO ₃) ₃
	Порошок	65.88		34.25		447.94	
	Референтный образец	66.47		33.17		408.95	
	0.5	62.94	65.51	32.44	32.87	417.22	420.81
	1	63.27	66.06	31.97	33.21	384.68	424.07

28.09

67.09

3

55.10

396.06

371.31

33.69

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. В работе впервые методом гидротермального синтеза получены наночастицы, наноразмерные порошки и нанокерамика гексагональных ферритов бария и стронция типа М с замещениями железа на ионы Ni, Co, Cr и изучена их кристаллическая и магнитная структура, магнитные свойства.

2. Гидротермальная обработка растворов солей бария\стронция и железа в щелочной среде при 180-230 °С в течение 4-12 ч приводит к образованию ферригидрита, а для образования гексаферрита необходим дополнительный отжиг полученных порошков при 900 °С в течение 1 ч, в результате которого формируются пластинчатые частицы с диаметром до 200 нм и толщиной около 60 нм.

соотношения 3. Установлены оптимальные Fe/Ba=9 И Fe/Sr=7, позволяющие максимизировать гексаферритов выход при гидротермальном синтезе И, соответственно, минимизировать количество побочных фаз BaFe₂O₄/SrFeO₃ и α-Fe₂O₃.

4. В ферритах $BaFe_{12-x}Ni_xO_{19}$ с увеличением х монотонно снижаются все магнитные характеристики (M_s , M_r , H_c), что обусловлено замещениями ионов Fe^{3+} в позициях 12k ионами Ni^{2+} с меньшим магнитным моментом. Концентрация никеля не влияет на морфологию частиц гексаферрита бария.

5. Магнитные параметры ферритов $BaFe_{12-x}Co_xO_{19}$ в основном уменьшаются с повышением х. Отчасти это вызвано замещением ионов железа ионами кобальта с меньшим магнитным моментом во всех кристаллографических позициях. Кроме того, при x=0.3 происходит резкое снижение коэрцитивной силы с 460.9 кА/м (x=0.1) до 259.9 кА/м (x=0.3), что сопровождается и вызвано уменьшением толщины пластинчатых частиц до 15-20 нм и увеличением соотношения диаметра к толщине.

6. Коэрцитивная сила однодоменной пластинчатой частицы гексаферрита бария монотонно уменьшается с ростом отношения диаметра частицы к ее толщине, а также зависит от направления, в котором проводятся измерения намагниченности.

7. Ферриты BaFe_{12-x}Al_xO₁₉ с x=0.1-0.4 незначительно отличаются по магнитным свойствам, морфологии кристаллитов и виду мессбауэровских и энергодисперсионных спектров, что обусловлено

ограниченным вхождением алюминия в решетку феррита при синтезе гидротермальным методом.

8. Замещение железа хромом в ферритах $BaFe_{12-x}Cr_xO_{19}$ приводит к значительному снижению коэрцитивной силы, что обусловлено как изменением формы частиц – увеличением отношения диаметра к толщине – так и вероятным частичным окислением ионов Cr^{3+} до Cr^{6+} и образованием вакансий Fe^{3+} , которые могут распределяться по позициям 12k, $4f_2$ и $4f_1$ и снижать магнитокристаллическую анизотропию.

9. Впервые изучено влияние легкоплавких добавок Bi₂O₃ и B₂O₃ на особенности спекания и свойства гексагональных ферритов, полученных методом гидротермального синтеза.

10.Установлено, что введение в гексаферрит B_2O_3 (или Bi_2O_3) в количестве менее 3 масс.% с последующим отжигом спрессованных заготовок при 900 °С приводит к увеличению плотности образцов с 4.12 до 4.39-4.68 г/см³. При этом коэрцитивная сила ферритов уменьшается с 448 кА/м до 370-424 кА/м, что представляет собой снижение более чем на 5-15%. Однако эта величина сохраняется на уровне, заметно превышающем показатели большинства известных марок гексаферритов бария.

Основные результаты работы представлены в статьях, опубликованных в журналах из перечня WOS/SCOPUS/BAK

1.A.Y. Mironovich, V.G. Kostishin, R.I. Shakirzyanov, A.A. Mukabenov, S.A. Melnikov, A.I. Ril, **H.I. Al-Khafaji**. Effect of the Fe/Ba and Fe/Sr ratios on the phase composition, dielectric properties and magnetic characteristics of M-type hexaferrites prepared by the hydrothermal method //Journal of Solid State Chemistry. -2022. -T. 316. -C. 123625.

https://doi.org/10.1016/j.jssc.2022.123625

2. A.Yu. Mironovich, V.G. Kostishin, H.I. Al-Khafaji, A.V. Timofeev,

A.I. Ril, R.I. Shakirzyanov. Study of structure, cation distribution and magnetic properties of Ni substituted M-type barium hexaferrite //Materialia. – 2023. – T. 32. – C. 101898. https://doi.org/10.1016/j.mtla.2023.101898

3. A.Yu. Mironovich, V.G. Kostishin, **H.I. Al-Khafaji**, A.V. Timofeev, A.I. Ril, R.I. Shakirzyanov, E.S. Savchenko, S.E. Yamilov. Magnetic and structural properties of Co-substituted barium hexaferrite synthesized by hydrothermal method //Journal of Magnetism and Magnetic Materials. – 2023. – T. 588. – C. 171469. https://doi.org/10.1016/j.jmmm.2023.171469

4. А. Ю. Миронович, В. Г. Костишин, **Х. И. Аль-Хафаджи**, Е. С. Савченко, В. А. Астахов, А. И. Риль. Исследование магнитных и структурных свойств ферритов BaFe_{12-x}Cu_xO₁₉, полученных методом гидротермального синтеза //Заводская лаборатория. Диагностика материалов. – 2024. – Т. 90. – №. 9. – С. 39-47.

https://doi.org/10.26896/1028-6861-2024-90-9-39-47

5. A. Yu. Mironovich, V. G. Kostishin, **H. I. Al-Khafaji**, A. V. Timofeev, E. S. Savchenko & A. I. Ril. Submicron Barium Hexaferrite Ceramics Manufactured by Low-Temperature Liquid-Phase Sintering of $BaFe_{12}O_{19}$ Nanoparticles //Russian Journal of Inorganic Chemistry. – 2024. – C. 1-9.

https://doi.org/10.1134/S0036023624602630